An Implementation of Faster RCNN with Study for Region Sampling

7 Feb 2017  ·  Xinlei Chen, Abhinav Gupta ·

We adapted the join-training scheme of Faster RCNN framework from Caffe to TensorFlow as a baseline implementation for object detection. Our code is made publicly available. This report documents the simplifications made to the original pipeline, with justifications from ablation analysis on both PASCAL VOC 2007 and COCO 2014. We further investigated the role of non-maximal suppression (NMS) in selecting regions-of-interest (RoIs) for region classification, and found that a biased sampling toward small regions helps performance and can achieve on-par mAP to NMS-based sampling when converged sufficiently.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here