An inexact subsampled proximal Newton-type method for large-scale machine learning

28 Aug 2017  ·  Xuanqing Liu, Cho-Jui Hsieh, Jason D. Lee, Yuekai Sun ·

We propose a fast proximal Newton-type algorithm for minimizing regularized finite sums that returns an $\epsilon$-suboptimal point in $\tilde{\mathcal{O}}(d(n + \sqrt{\kappa d})\log(\frac{1}{\epsilon}))$ FLOPS, where $n$ is number of samples, $d$ is feature dimension, and $\kappa$ is the condition number. As long as $n > d$, the proposed method is more efficient than state-of-the-art accelerated stochastic first-order methods for non-smooth regularizers which requires $\tilde{\mathcal{O}}(d(n + \sqrt{\kappa n})\log(\frac{1}{\epsilon}))$ FLOPS. The key idea is to form the subsampled Newton subproblem in a way that preserves the finite sum structure of the objective, thereby allowing us to leverage recent developments in stochastic first-order methods to solve the subproblem. Experimental results verify that the proposed algorithm outperforms previous algorithms for $\ell_1$-regularized logistic regression on real datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here