An Iteratively Reweighted Method for Sparse Optimization on Nonconvex $\ell_{p}$ Ball

7 Apr 2021  ·  Hao Wang, Xiangyu Yang, Wei Jiang ·

This paper is intended to solve the nonconvex $\ell_{p}$-ball constrained nonlinear optimization problems. An iteratively reweighted method is proposed, which solves a sequence of weighted $\ell_{1}$-ball projection subproblems. At each iteration, the next iterate is obtained by moving along the negative gradient with a stepsize and then projecting the resulted point onto the weighted $\ell_{1}$ ball to approximate the $\ell_{p}$ ball. Specifically, if the current iterate is in the interior of the feasible set, then the weighted $\ell_{1}$ ball is formed by linearizing the $\ell_{p}$ norm at the current iterate. If the current iterate is on the boundary of the feasible set, then the weighted $\ell_{1}$ ball is formed differently by keeping those zero components in the current iterate still zero. In our analysis, we prove that the generated iterates converge to a first-order stationary point. Numerical experiments demonstrate the effectiveness of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here