An Orthogonal-SGD based Learning Approach for MIMO Detection under Multiple Channel Models

25 Feb 2020 Xue Songyan Ma Yi Tafazolli Rahim

In this paper, an orthogonal stochastic gradient descent (O-SGD) based learning approach is proposed to tackle the wireless channel over-training problem inherent in artificial neural network (ANN)-assisted MIMO signal detection. Our basic idea lies in the discovery and exploitation of the training-sample orthogonality between the current training epoch and past training epochs... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet