An $O(s^r)$-Resolution ODE Framework for Understanding Discrete-Time Algorithms and Applications to the Linear Convergence of Minimax Problems

23 Jan 2020  ·  ·

There has been a long history of using ordinary differential equations (ODEs) to understand the dynamics of discrete-time algorithms (DTAs). Surprisingly, there are still two fundamental and unanswered questions: (i) it is unclear how to obtain a \emph{suitable} ODE from a given DTA, and (ii) it is unclear the connection between the convergence of a DTA and its corresponding ODEs. In this paper, we propose a new machinery -- an $O(s^r)$-resolution ODE framework -- for analyzing the behavior of a generic DTA, which (partially) answers the above two questions. The framework contains three steps: 1. To obtain a suitable ODE from a given DTA, we define a hierarchy of $O(s^r)$-resolution ODEs of a DTA parameterized by the degree $r$, where $s$ is the step-size of the DTA. We present a principal approach to construct the unique $O(s^r)$-resolution ODEs from a DTA; 2. To analyze the resulting ODE, we propose the $O(s^r)$-linear-convergence condition of a DTA with respect to an energy function, under which the $O(s^r)$-resolution ODE converges linearly to an optimal solution; 3. To bridge the convergence properties of a DTA and its corresponding ODEs, we define the properness of an energy function and show that the linear convergence of the $O(s^r)$-resolution ODE with respect to a proper energy function can automatically guarantee the linear convergence of the DTA. To better illustrate this machinery, we utilize it to study three classic algorithms -- gradient descent ascent (GDA), proximal point method (PPM) and extra-gradient method (EGM) -- for solving the unconstrained minimax problem $\min_{x\in\RR^n} \max_{y\in \RR^m} L(x,y)$.

PDF Abstract

No code implementations yet. Submit your code now

Datasets

Add Datasets introduced or used in this paper

Results from the Paper Add Remove

Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.