An Overview of Structural Coverage Metrics for Testing Neural Networks

Deep neural network (DNN) models, including those used in safety-critical domains, need to be thoroughly tested to ensure that they can reliably perform well in different scenarios. In this article, we provide an overview of structural coverage metrics for testing DNN models, including neuron coverage (NC), k-multisection neuron coverage (kMNC), top-k neuron coverage (TKNC), neuron boundary coverage (NBC), strong neuron activation coverage (SNAC) and modified condition/decision coverage (MC/DC). We evaluate the metrics on realistic DNN models used for perception tasks (including LeNet-1, LeNet-4, LeNet-5, and ResNet20) as well as on networks used in autonomy (TaxiNet). We also provide a tool, DNNCov, which can measure the testing coverage for all these metrics. DNNCov outputs an informative coverage report to enable researchers and practitioners to assess the adequacy of DNN testing, compare different coverage measures, and to more conveniently inspect the model's internals during testing.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here