An SMT-Based Approach for Verifying Binarized Neural Networks

5 Nov 2020  ·  Guy Amir, Haoze Wu, Clark Barrett, Guy Katz ·

Deep learning has emerged as an effective approach for creating modern software systems, with neural networks often surpassing hand-crafted systems. Unfortunately, neural networks are known to suffer from various safety and security issues. Formal verification is a promising avenue for tackling this difficulty, by formally certifying that networks are correct. We propose an SMT-based technique for verifying Binarized Neural Networks - a popular kind of neural network, where some weights have been binarized in order to render the neural network more memory and energy efficient, and quicker to evaluate. One novelty of our technique is that it allows the verification of neural networks that include both binarized and non-binarized components. Neural network verification is computationally very difficult, and so we propose here various optimizations, integrated into our SMT procedure as deduction steps, as well as an approach for parallelizing verification queries. We implement our technique as an extension to the Marabou framework, and use it to evaluate the approach on popular binarized neural network architectures.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here