ANA at SemEval-2019 Task 3: Contextual Emotion detection in Conversations through hierarchical LSTMs and BERT

This paper describes the system submitted by ANA Team for the SemEval-2019 Task 3: EmoContext. We propose a novel Hierarchical LSTMs for Contextual Emotion Detection (HRLCE) model. It classifies the emotion of an utterance given its conversational context. The results show that, in this task, our HRCLE outperforms the most recent state-of-the-art text classification framework: BERT. We combine the results generated by BERT and HRCLE to achieve an overall score of 0.7709 which ranked 5th on the final leader board of the competition among 165 Teams.

PDF Abstract SEMEVAL 2019 PDF SEMEVAL 2019 Abstract

Datasets


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Emotion Recognition in Conversation EC HRLCE + BERT Micro-F1 0.7709 # 3

Methods