Paper

Analogical Inference for Multi-Relational Embeddings

Large-scale multi-relational embedding refers to the task of learning the latent representations for entities and relations in large knowledge graphs. An effective and scalable solution for this problem is crucial for the true success of knowledge-based inference in a broad range of applications. This paper proposes a novel framework for optimizing the latent representations with respect to the \textit{analogical} properties of the embedded entities and relations. By formulating the learning objective in a differentiable fashion, our model enjoys both theoretical power and computational scalability, and significantly outperformed a large number of representative baseline methods on benchmark datasets. Furthermore, the model offers an elegant unification of several well-known methods in multi-relational embedding, which can be proven to be special instantiations of our framework.

Results in Papers With Code
(↓ scroll down to see all results)