Analyse d'erreurs de transcriptions phon\'emiques automatiques d'une langue « rare » : le na (mosuo) (Analyzing errors in automatic phonemic transcriptions of the Na (Mosuo) language (SinoTibetan family) Automatic phonemic transcription tools now reach high levels of accuracy on a single speaker with relatively small amounts of training data: on the order two to three hours of transcribed speech)

JEPTALNRECITAL 2020 Alexis MichaudOliver AdamsS{\'e}verine GuillaumeGuillaume Wisniewski

Les syst{\`e}mes de reconnaissance automatique de la parole atteignent d{\'e}sormais des degr{\'e}s de pr{\'e}cision {\'e}lev{\'e}s sur la base d{'}un corpus d{'}entra{\^\i}nement limit{\'e} {\`a} deux ou trois heures d{'}enregistrements transcrits (pour un syst{\`e}me mono-locuteur). Au-del{\`a} de l{'}int{\'e}r{\^e}t pratique que pr{\'e}sentent ces avanc{\'e}es technologiques pour les t{\^a}ches de documentation de langues rares et en danger, se pose la question de leur apport pour la r{\'e}flexion du phon{\'e}ticien/phonologue... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet