Analysis and Optimization of Deep Counterfactual Value Networks

2 Jul 2018Patryk HopnerEneldo Loza Mencía

Recently a strong poker-playing algorithm called DeepStack was published, which is able to find an approximate Nash equilibrium during gameplay by using heuristic values of future states predicted by deep neural networks. This paper analyzes new ways of encoding the inputs and outputs of DeepStack's deep counterfactual value networks based on traditional abstraction techniques, as well as an unabstracted encoding, which was able to increase the network's accuracy...

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet