Analysis of Deep Neural Networks with Quasi-optimal polynomial approximation rates

4 Dec 2019  ·  Joseph Daws, Clayton Webster ·

We show the existence of a deep neural network capable of approximating a wide class of high-dimensional approximations. The construction of the proposed neural network is based on a quasi-optimal polynomial approximation. We show that this network achieves an error rate that is sub-exponential in the number of polynomial functions, $M$, used in the polynomial approximation. The complexity of the network which achieves this sub-exponential rate is shown to be algebraic in $M$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here