Analysis of Evolutionary Diversity Optimisation for Permutation Problems

23 Feb 2021  ·  Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann ·

Generating diverse populations of high quality solutions has gained interest as a promising extension to the traditional optimization tasks. This work contributes to this line of research with an investigation on evolutionary diversity optimization for three of the most well-studied permutation problems, namely the Traveling Salesperson Problem (TSP), both symmetric and asymmetric variants, and Quadratic Assignment Problem (QAP). It includes an analysis of the worst-case performance of a simple mutation-only evolutionary algorithm with different mutation operators, using an established diversity measure. Theoretical results show many mutation operators for these problems guarantee convergence to maximally diverse populations of sufficiently small size within cubic to quartic expected run-time. On the other hand, the result on QAP suggests that strong mutations give poor worst-case performance, as mutation strength contributes exponentially to the expected run-time. Additionally, experiments are carried out on QAPLIB and synthetic instances in unconstrained and constrained settings, and reveal much more optimistic practical performances, while corroborating the theoretical finding regarding mutation strength. These results should serve as a baseline for future studies.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here