Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections

10 Apr 2019  ·  Weinan E, Chao Ma, Qingcan Wang, Lei Wu ·

The behavior of the gradient descent (GD) algorithm is analyzed for a deep neural network model with skip-connections. It is proved that in the over-parametrized regime, for a suitable initialization, with high probability GD can find a global minimum exponentially fast. Generalization error estimates along the GD path are also established. As a consequence, it is shown that when the target function is in the reproducing kernel Hilbert space (RKHS) with a kernel defined by the initialization, there exist generalizable early-stopping solutions along the GD path. In addition, it is also shown that the GD path is uniformly close to the functions given by the related random feature model. Consequently, in this "implicit regularization" setting, the deep neural network model deteriorates to a random feature model. Our results hold for neural networks of any width larger than the input dimension.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here