Analysis via Orthonormal Systems in Reproducing Kernel Hilbert $C^*$-Modules and Applications

Kernel methods have been among the most popular techniques in machine learning, where learning tasks are solved using the property of reproducing kernel Hilbert space (RKHS). In this paper, we propose a novel data analysis framework with reproducing kernel Hilbert $C^*$-module (RKHM), which is another generalization of RKHS than vector-valued RKHS (vv-RKHS)... Analysis with RKHMs enables us to deal with structures among variables more explicitly than vv-RKHS. We show the theoretical validity for the construction of orthonormal systems in Hilbert $C^*$-modules, and derive concrete procedures for orthonormalization in RKHMs with those theoretical properties in numerical computations. Moreover, we apply those to generalize with RKHM kernel principal component analysis and the analysis of dynamical systems with Perron-Frobenius operators. The empirical performance of our methods is also investigated by using synthetic and real-world data. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here