Analytical Inverter-Based Distributed Generator Model for Power Flow Analysis

9 Jul 2021  ·  Naeem Turner-Bandele, Amritanshu Pandey, Larry Pileggi ·

Quantifying the impact of inverter-based distributed generation (DG) sources on power-flow distribution system cases is arduous. Existing distribution system tools predominately model distributed generation sources as either negative PQ loads or as a PV generator and then employed a PV-PQ switching algorithm to mimic Volt/VAR support. These models neglect the unique characteristics of inverter-based distributed generation sources, have scalability and convergence issues, and are ill-suited for increasing solar penetration scenarios. This work proposes an inverter-based DG model accounting for the inverter's topology, sensing position, and control strategies. The model extends recently introduced analytical positive sequence generator models for three-phase studies. The use of circuit-simulation based heuristics help achieve robust convergence. Simulation of the PG&E prototypical feeders using a prototype solver demonstrate the model's accuracy and efficacy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here