Analytics and Machine Learning Powered Wireless Network Optimization and Planning

14 Sep 2022  ·  Ying Li, Djordje Tujkovic, Po-Han Huang ·

It is important that the wireless network is well optimized and planned, using the limited wireless spectrum resources, to serve the explosively growing traffic and diverse applications needs of end users. Considering the challenges of dynamics and complexity of the wireless systems, and the scale of the networks, it is desirable to have solutions to automatically monitor, analyze, optimize, and plan the network. This article discusses approaches and solutions of data analytics and machine learning powered optimization and planning. The approaches include analyzing some important metrics of performances and experiences, at the lower layers and upper layers of open systems interconnection (OSI) model, as well as deriving a metric of the end user perceived network congestion indicator. The approaches include monitoring and diagnosis such as anomaly detection of the metrics, root cause analysis for poor performances and experiences. The approaches include enabling network optimization with tuning recommendations, directly targeting to optimize the end users experiences, via sensitivity modeling and analysis of the upper layer metrics of the end users experiences v.s. the improvement of the lower layers metrics due to tuning the hardware configurations. The approaches also include deriving predictive metrics for network planning, traffic demand distributions and trends, detection and prediction of the suppressed traffic demand, and the incentives of traffic gains if the network is upgraded. These approaches of optimization and planning are for accurate detection of optimization and upgrading opportunities at a large scale, enabling more effective optimization and planning such as tuning cells configurations, upgrading cells capacity with more advanced technologies or new hardware, adding more cells, etc., improving the network performances and providing better experiences to end users.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here