Analyzing Accuracy Loss in Randomized Smoothing Defenses

3 Mar 2020  ·  Yue Gao, Harrison Rosenberg, Kassem Fawaz, Somesh Jha, Justin Hsu ·

Recent advances in machine learning (ML) algorithms, especially deep neural networks (DNNs), have demonstrated remarkable success (sometimes exceeding human-level performance) on several tasks, including face and speech recognition. However, ML algorithms are vulnerable to \emph{adversarial attacks}, such test-time, training-time, and backdoor attacks. In test-time attacks an adversary crafts adversarial examples, which are specially crafted perturbations imperceptible to humans which, when added to an input example, force a machine learning model to misclassify the given input example. Adversarial examples are a concern when deploying ML algorithms in critical contexts, such as information security and autonomous driving. Researchers have responded with a plethora of defenses. One promising defense is \emph{randomized smoothing} in which a classifier's prediction is smoothed by adding random noise to the input example we wish to classify. In this paper, we theoretically and empirically explore randomized smoothing. We investigate the effect of randomized smoothing on the feasible hypotheses space, and show that for some noise levels the set of hypotheses which are feasible shrinks due to smoothing, giving one reason why the natural accuracy drops after smoothing. To perform our analysis, we introduce a model for randomized smoothing which abstracts away specifics, such as the exact distribution of the noise. We complement our theoretical results with extensive experiments.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods