Analyzing the Perceived Severity of Cybersecurity Threats Reported on Social Media

Breaking cybersecurity events are shared across a range of websites, including security blogs (FireEye, Kaspersky, etc.), in addition to social media platforms such as Facebook and Twitter. In this paper, we investigate methods to analyze the severity of cybersecurity threats based on the language that is used to describe them online. A corpus of 6,000 tweets describing software vulnerabilities is annotated with authors' opinions toward their severity. We show that our corpus supports the development of automatic classifiers with high precision for this task. Furthermore, we demonstrate the value of analyzing users' opinions about the severity of threats reported online as an early indicator of important software vulnerabilities. We present a simple, yet effective method for linking software vulnerabilities reported in tweets to Common Vulnerabilities and Exposures (CVEs) in the National Vulnerability Database (NVD). Using our predicted severity scores, we show that it is possible to achieve a Precision@50 of 0.86 when forecasting high severity vulnerabilities, significantly outperforming a baseline that is based on tweet volume. Finally we show how reports of severe vulnerabilities online are predictive of real-world exploits.

PDF Abstract NAACL 2019 PDF NAACL 2019 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here