AnimeDiffusion: Anime Face Line Drawing Colorization via Diffusion Models

20 Mar 2023  ·  Yu Cao, Xiangqiao Meng, P. Y. Mok, Xueting Liu, Tong-Yee Lee, Ping Li ·

It is a time-consuming and tedious work for manually colorizing anime line drawing images, which is an essential stage in cartoon animation creation pipeline. Reference-based line drawing colorization is a challenging task that relies on the precise cross-domain long-range dependency modelling between the line drawing and reference image. Existing learning methods still utilize generative adversarial networks (GANs) as one key module of their model architecture. In this paper, we propose a novel method called AnimeDiffusion using diffusion models that performs anime face line drawing colorization automatically. To the best of our knowledge, this is the first diffusion model tailored for anime content creation. In order to solve the huge training consumption problem of diffusion models, we design a hybrid training strategy, first pre-training a diffusion model with classifier-free guidance and then fine-tuning it with image reconstruction guidance. We find that with a few iterations of fine-tuning, the model shows wonderful colorization performance, as illustrated in Fig. 1. For training AnimeDiffusion, we conduct an anime face line drawing colorization benchmark dataset, which contains 31696 training data and 579 testing data. We hope this dataset can fill the gap of no available high resolution anime face dataset for colorization method evaluation. Through multiple quantitative metrics evaluated on our dataset and a user study, we demonstrate AnimeDiffusion outperforms state-of-the-art GANs-based models for anime face line drawing colorization. We also collaborate with professional artists to test and apply our AnimeDiffusion for their creation work. We release our code on https://github.com/xq-meng/AnimeDiffusion.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods