Anisotropic Diffusion-based Kernel Matrix Model for Face Liveness Detection

10 Jul 2017  ·  Changyong Yu, Yunde Jia ·

Facial recognition and verification is a widely used biometric technology in security system. Unfortunately, face biometrics is vulnerable to spoofing attacks using photographs or videos... In this paper, we present an anisotropic diffusion-based kernel matrix model (ADKMM) for face liveness detection to prevent face spoofing attacks. We use the anisotropic diffusion to enhance the edges and boundary locations of a face image, and the kernel matrix model to extract face image features which we call the diffusion-kernel (D-K) features. The D-K features reflect the inner correlation of the face image sequence. We introduce convolution neural networks to extract the deep features, and then, employ a generalized multiple kernel learning method to fuse the D-K features and the deep features to achieve better performance. Our experimental evaluation on the two publicly available datasets shows that the proposed method outperforms the state-of-art face liveness detection methods. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods