Anomaly Detection with Score functions based on Nearest Neighbor Graphs

NeurIPS 2009 Manqi ZhaoVenkatesh Saligrama

We propose a novel non-parametric adaptive anomaly detection algorithm for high dimensional data based on score functions derived from nearest neighbor graphs on n-point nominal data. Anomalies are declared whenever the score of a test sample falls below q, which is supposed to be the desired false alarm level... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.