Answer-Set Programs for Reasoning about Counterfactual Interventions and Responsibility Scores for Classification

21 Jul 2021  ·  Leopoldo Bertossi, Gabriela Reyes ·

We describe how answer-set programs can be used to declaratively specify counterfactual interventions on entities under classification, and reason about them. In particular, they can be used to define and compute responsibility scores as attribution-based explanations for outcomes from classification models. The approach allows for the inclusion of domain knowledge and supports query answering. A detailed example with a naive-Bayes classifier is presented.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here