Antelope: Potent and Concealed Jailbreak Attack Strategy

11 Dec 2024  ·  Xin Zhao, Xiaojun Chen, Haoyu Gao ·

Due to the remarkable generative potential of diffusion-based models, numerous researches have investigated jailbreak attacks targeting these frameworks. A particularly concerning threat within image models is the generation of Not-Safe-for-Work (NSFW) content. Despite the implementation of security filters, numerous efforts continue to explore ways to circumvent these safeguards. Current attack methodologies primarily encompass adversarial prompt engineering or concept obfuscation, yet they frequently suffer from slow search efficiency, conspicuous attack characteristics and poor alignment with targets. To overcome these challenges, we propose Antelope, a more robust and covert jailbreak attack strategy designed to expose security vulnerabilities inherent in generative models. Specifically, Antelope leverages the confusion of sensitive concepts with similar ones, facilitates searches in the semantically adjacent space of these related concepts and aligns them with the target imagery, thereby generating sensitive images that are consistent with the target and capable of evading detection. Besides, we successfully exploit the transferability of model-based attacks to penetrate online black-box services. Experimental evaluations demonstrate that Antelope outperforms existing baselines across multiple defensive mechanisms, underscoring its efficacy and versatility.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here