AnyMatch -- Efficient Zero-Shot Entity Matching with a Small Language Model

6 Sep 2024  ·  Zeyu Zhang, Paul Groth, Iacer Calixto, Sebastian Schelter ·

Entity matching (EM) is the problem of determining whether two records refer to same real-world entity, which is crucial in data integration, e.g., for product catalogs or address databases. A major drawback of many EM approaches is their dependence on labelled examples. We thus focus on the challenging setting of zero-shot entity matching where no labelled examples are available for an unseen target dataset. Recently, large language models (LLMs) have shown promising results for zero-shot EM, but their low throughput and high deployment cost limit their applicability and scalability. We revisit the zero-shot EM problem with AnyMatch, a small language model fine-tuned in a transfer learning setup. We propose several novel data selection techniques to generate fine-tuning data for our model, e.g., by selecting difficult pairs to match via an AutoML filter, by generating additional attribute-level examples, and by controlling label imbalance in the data. We conduct an extensive evaluation of the prediction quality and deployment cost of our model, in a comparison to thirteen baselines on nine benchmark datasets. We find that AnyMatch provides competitive prediction quality despite its small parameter size: it achieves the second-highest F1 score overall, and outperforms several other approaches that employ models with hundreds of billions of parameters. Furthermore, our approach exhibits major cost benefits: the average prediction quality of AnyMatch is within 4.4% of the state-of-the-art method MatchGPT with the proprietary trillion-parameter model GPT-4, yet AnyMatch requires four orders of magnitude less parameters and incurs a 3,899 times lower inference cost (in dollars per 1,000 tokens).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods