Anytime Neural Network: a Versatile Trade-off Between Computation and Accuracy

We present an approach for anytime predictions in deep neural networks (DNNs). For each test sample, an anytime predictor produces a coarse result quickly, and then continues to refine it until the test-time computational budget is depleted. Such predictors can address the growing computational problem of DNNs by automatically adjusting to varying test-time budgets. In this work, we study a \emph{general} augmentation to feed-forward networks to form anytime neural networks (ANNs) via auxiliary predictions and losses. Specifically, we point out a blind-spot in recent studies in such ANNs: the importance of high final accuracy. In fact, we show on multiple recognition data-sets and architectures that by having near-optimal final predictions in small anytime models, we can effectively double the speed of large ones to reach corresponding accuracy level. We achieve such speed-up with simple weighting of anytime losses that oscillate during training. We also assemble a sequence of exponentially deepening ANNs, to achieve both theoretically and practically near-optimal anytime results at any budget, at the cost of a constant fraction of additional consumed budget.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods