Applying advanced machine learning models to classify electro-physiological activity of human brain for use in biometric identification

3 Aug 2017 Iaroslav Omelianenko

In this article we present the results of our research related to the study of correlations between specific visual stimulation and the elicited brain's electro-physiological response collected by EEG sensors from a group of participants. We will look at how the various characteristics of visual stimulation affect the measured electro-physiological response of the brain and describe the optimal parameters found that elicit a steady-state visually evoked potential (SSVEP) in certain parts of the cerebral cortex where it can be reliably perceived by the electrode of the EEG device... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet