Approximability of Discriminators Implies Diversity in GANs

ICLR 2019 Yu BaiTengyu MaAndrej Risteski

While Generative Adversarial Networks (GANs) have empirically produced impressive results on learning complex real-world distributions, recent works have shown that they suffer from lack of diversity or mode collapse. The theoretical work of Arora et al. suggests a dilemma about GANs' statistical properties: powerful discriminators cause overfitting, whereas weak discriminators cannot detect mode collapse... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet