Paper

Approximate exploitability: Learning a best response in large games

Researchers have demonstrated that neural networks are vulnerable to adversarial examples and subtle environment changes, both of which one can view as a form of distribution shift. To humans, the resulting errors can look like blunders, eroding trust in these agents. In prior games research, agent evaluation often focused on the in-practice game outcomes. While valuable, such evaluation typically fails to evaluate robustness to worst-case outcomes. Prior research in computer poker has examined how to assess such worst-case performance, both exactly and approximately. Unfortunately, exact computation is infeasible with larger domains, and existing approximations rely on poker-specific knowledge. We introduce ISMCTS-BR, a scalable search-based deep reinforcement learning algorithm for learning a best response to an agent, thereby approximating worst-case performance. We demonstrate the technique in several two-player zero-sum games against a variety of agents, including several AlphaZero-based agents.

Results in Papers With Code
(↓ scroll down to see all results)