Approximate Exploration through State Abstraction

29 Aug 2018  ·  Adrien Ali Taïga, Aaron Courville, Marc G. Bellemare ·

Although exploration in reinforcement learning is well understood from a theoretical point of view, provably correct methods remain impractical. In this paper we study the interplay between exploration and approximation, what we call approximate exploration. Our main goal is to further our theoretical understanding of pseudo-count based exploration bonuses (Bellemare et al., 2016), a practical exploration scheme based on density modelling. As a warm-up, we quantify the performance of an exploration algorithm, MBIE-EB (Strehl and Littman, 2008), when explicitly combined with state aggregation. This allows us to confirm that, as might be expected, approximation allows the agent to trade off between learning speed and quality of the learned policy. Next, we show how a given density model can be related to an abstraction and that the corresponding pseudo-count bonus can act as a substitute in MBIE-EB combined with this abstraction, but may lead to either under- or over-exploration. Then, we show that a given density model also defines an implicit abstraction, and find a surprising mismatch between pseudo-counts derived either implicitly or explicitly. Finally we derive a new pseudo-count bonus alleviating this issue.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods