Approximate Query Matching for Image Retrieval

14 Mar 2018  ·  Abhijit Suprem, Polo Chau ·

Traditional image recognition involves identifying the key object in a portrait-type image with a single object focus (ILSVRC, AlexNet, and VGG). More recent approaches consider dense image recognition - segmenting an image with appropriate bounding boxes and performing image recognition within these bounding boxes (Semantic segmentation)... The Visual Genome dataset [5] is an attempt to bridge these various approaches to a cohesive dataset for each subtask - bounding box generation, image recognition, captioning, and a new operation: scene graph generation. Our focus is on using such scene graphs to perform graph search on image databases to holistically retrieve images based on a search criteria. We develop a method to store scene graphs and metadata in graph databases (using Neo4J) and to perform fast approximate retrieval of images based on a graph search query. We process more complex queries than single object search, e.g. "girl eating cake" retrieves images that contain the specified relation as well as variations. read more

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.