Approximating Optimal Transport via Low-rank and Sparse Factorization

12 Nov 2021  ·  Weijie Liu, Chao Zhang, Nenggan Zheng, Hui Qian ·

Optimal transport (OT) naturally arises in a wide range of machine learning applications but may often become the computational bottleneck. Recently, one line of works propose to solve OT approximately by searching the \emph{transport plan} in a low-rank subspace. However, the optimal transport plan is often not low-rank, which tends to yield large approximation errors. For example, when Monge's \emph{transport map} exists, the transport plan is full rank. This paper concerns the computation of the OT distance with adequate accuracy and efficiency. A novel approximation for OT is proposed, in which the transport plan can be decomposed into the sum of a low-rank matrix and a sparse one. We theoretically analyze the approximation error. An augmented Lagrangian method is then designed to efficiently calculate the transport plan.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here