Approximation and Parameterized Complexity of Minimax Approval Voting

26 Jul 2016  ·  Marek Cygan, Łukasz Kowalik, Arkadiusz Socała, Krzysztof Sornat ·

We present three results on the complexity of Minimax Approval Voting. First, we study Minimax Approval Voting parameterized by the Hamming distance $d$ from the solution to the votes. We show Minimax Approval Voting admits no algorithm running in time $\mathcal{O}^\star(2^{o(d\log d)})$, unless the Exponential Time Hypothesis (ETH) fails. This means that the $\mathcal{O}^\star(d^{2d})$ algorithm of Misra et al. [AAMAS 2015] is essentially optimal. Motivated by this, we then show a parameterized approximation scheme, running in time $\mathcal{O}^\star(\left({3}/{\epsilon}\right)^{2d})$, which is essentially tight assuming ETH. Finally, we get a new polynomial-time randomized approximation scheme for Minimax Approval Voting, which runs in time $n^{\mathcal{O}(1/\epsilon^2 \cdot \log(1/\epsilon))} \cdot \mathrm{poly}(m)$, almost matching the running time of the fastest known PTAS for Closest String due to Ma and Sun [SIAM J. Comp. 2009].

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here