Approximation-Aware Dependency Parsing by Belief Propagation

TACL 2015  ·  Matthew R. Gormley, Mark Dredze, Jason Eisner ·

We show how to train the fast dependency parser of Smith and Eisner (2008) for improved accuracy. This parser can consider higher-order interactions among edges while retaining O(n^3) runtime. It outputs the parse with maximum expected recall -- but for speed, this expectation is taken under a posterior distribution that is constructed only approximately, using loopy belief propagation through structured factors. We show how to adjust the model parameters to compensate for the errors introduced by this approximation, by following the gradient of the actual loss on training data. We find this gradient by back-propagation. That is, we treat the entire parser (approximations and all) as a differentiable circuit, as Stoyanov et al. (2011) and Domke (2010) did for loopy CRFs. The resulting trained parser obtains higher accuracy with fewer iterations of belief propagation than one trained by conditional log-likelihood.

PDF Abstract TACL 2015 PDF TACL 2015 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here