Ara: A 1 GHz+ Scalable and Energy-Efficient RISC-V Vector Processor with Multi-Precision Floating Point Support in 22 nm FD-SOI

2 Jun 2019  ·  Matheus Cavalcante, Fabian Schuiki, Florian Zaruba, Michael Schaffner, Luca Benini ·

In this paper, we present Ara, a 64-bit vector processor based on the version 0.5 draft of RISC-V's vector extension, implemented in GlobalFoundries 22FDX FD-SOI technology. Ara's microarchitecture is scalable, as it is composed of a set of identical lanes, each containing part of the processor's vector register file and functional units. It achieves up to 97% FPU utilization when running a 256 x 256 double precision matrix multiplication on sixteen lanes. Ara runs at 1.2 GHz in the typical corner (TT/0.80 V/25 oC), achieving a performance up to 34 DP-GFLOPS. In terms of energy efficiency, Ara achieves up to 67 DP-GFLOPS/W under the same conditions, which is 56% higher than similar vector processors found in literature. An analysis on several vectorizable linear algebra computation kernels for a range of different matrix and vector sizes gives insight into performance limitations and bottlenecks for vector processors and outlines directions to maintain high energy efficiency even for small matrix sizes where the vector architecture achieves suboptimal utilization of the available FPUs.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Hardware Architecture

Datasets


  Add Datasets introduced or used in this paper