Arabic Dialect Identification in Speech Transcripts

WS 2016 Shervin MalmasiMarcos Zampieri

In this paper we describe a system developed to identify a set of four regional Arabic dialects (Egyptian, Gulf, Levantine, North African) and Modern Standard Arabic (MSA) in a transcribed speech corpus. We competed under the team name MAZA in the Arabic Dialect Identification sub-task of the 2016 Discriminating between Similar Languages (DSL) shared task... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet