ArchiMeDe @ DANKMEMES: A New Model Architecture for Meme Detection

17 Dec 2020  ·  Jinen Setpal, Gabriele Sarti ·

We introduce ArchiMeDe, a multimodal neural network-based architecture used to solve the DANKMEMES meme detections subtask at the 2020 EVALITA campaign. The system incorporates information from visual and textual sources through a multimodal neural ensemble to predict if input images and their respective metadata are memes or not. Each pre-trained neural network in the ensemble is first fine-tuned individually on the training dataset to perform domain adaptation. Learned text and visual representations are then concatenated to obtain a single multimodal embedding, and the final prediction is performed through majority voting by all networks in the ensemble.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here