ArchiMob - A Corpus of Spoken Swiss German

Swiss dialects of German are, unlike most dialects of well standardised languages, widely used in everyday communication. Despite this fact, automatic processing of Swiss German is still a considerable challenge due to the fact that it is mostly a spoken variety rarely recorded and that it is subject to considerable regional variation. This paper presents a freely available general-purpose corpus of spoken Swiss German suitable for linguistic research, but also for training automatic tools. The corpus is a result of a long design process, intensive manual work and specially adapted computational processing. We first describe how the documents were transcribed, segmented and aligned with the sound source, and how inconsistent transcriptions were unified through an additional normalisation layer. We then present a bootstrapping approach to automatic normalisation using different machine-translation-inspired methods. Furthermore, we evaluate the performance of part-of-speech taggers on our data and show how the same bootstrapping approach improves part-of-speech tagging by 10{\%} over four rounds. Finally, we present the modalities of access of the corpus as well as the data format.

PDF Abstract LREC 2016 PDF LREC 2016 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here