Are Pretrained Multilingual Models Equally Fair Across Languages?

Pretrained multilingual language models can help bridge the digital language divide, enabling high-quality NLP models for lower resourced languages. Studies of multilingual models have so far focused on performance, consistency, and cross-lingual generalisation. However, with their wide-spread application in the wild and downstream societal impact, it is important to put multilingual models under the same scrutiny as monolingual models. This work investigates the group fairness of multilingual models, asking whether these models are equally fair across languages. To this end, we create a new four-way multilingual dataset of parallel cloze test examples (MozArt), equipped with demographic information (balanced with regard to gender and native tongue) about the test participants. We evaluate three multilingual models on MozArt -- mBERT, XLM-R, and mT5 -- and show that across the four target languages, the three models exhibit different levels of group disparity, e.g., exhibiting near-equal risk for Spanish, but high levels of disparity for German.

PDF Abstract COLING 2022 PDF COLING 2022 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.