ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks

ICLR 2019  ·  Mingzhang Yin, Mingyuan Zhou ·

To backpropagate the gradients through stochastic binary layers, we propose the augment-REINFORCE-merge (ARM) estimator that is unbiased, exhibits low variance, and has low computational complexity. Exploiting variable augmentation, REINFORCE, and reparameterization, the ARM estimator achieves adaptive variance reduction for Monte Carlo integration by merging two expectations via common random numbers. The variance-reduction mechanism of the ARM estimator can also be attributed to either antithetic sampling in an augmented space, or the use of an optimal anti-symmetric "self-control" baseline function together with the REINFORCE estimator in that augmented space. Experimental results show the ARM estimator provides state-of-the-art performance in auto-encoding variational inference and maximum likelihood estimation, for discrete latent variable models with one or multiple stochastic binary layers. Python code for reproducible research is publicly available.

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.