Arrays of (locality-sensitive) Count Estimators (ACE): High-Speed Anomaly Detection via Cache Lookups

20 Jun 2017  ·  Chen Luo, Anshumali Shrivastava ·

Anomaly detection is one of the frequent and important subroutines deployed in large-scale data processing systems. Even being a well-studied topic, existing techniques for unsupervised anomaly detection require storing significant amounts of data, which is prohibitive from memory and latency perspective... In the big-data world existing methods fail to address the new set of memory and latency constraints. In this paper, we propose ACE (Arrays of (locality-sensitive) Count Estimators) algorithm that can be 60x faster than the ELKI package~\cite{DBLP:conf/ssd/AchtertBKSZ09}, which has the fastest implementation of the unsupervised anomaly detection algorithms. ACE algorithm requires less than $4MB$ memory, to dynamically compress the full data information into a set of count arrays. These tiny $4MB$ arrays of counts are sufficient for unsupervised anomaly detection. At the core of the ACE algorithm, there is a novel statistical estimator which is derived from the sampling view of Locality Sensitive Hashing(LSH). This view is significantly different and efficient than the widely popular view of LSH for near-neighbor search. We show the superiority of ACE algorithm over 11 popular baselines on 3 benchmark datasets, including the KDD-Cup99 data which is the largest available benchmark comprising of more than half a million entries with ground truth anomaly labels. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here