Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction

5 Jun 2019Haofu LiaoWei-An LinJianbo YuanS. Kevin ZhouJiebo Luo

Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods which rely heavily on synthesized data for training. However, as synthesized data may not perfectly simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet