Assessing the Impact of Incremental Error Detection and Correction. A Case Study on the Italian Universal Dependency Treebank

Detection and correction of errors and inconsistencies in {``}gold treebanks{''} are becoming more and more central topics of corpus annotation. The paper illustrates a new incremental method for enhancing treebanks, with particular emphasis on the extension of error patterns across different textual genres and registers. Impact and role of corrections have been assessed in a dependency parsing experiment carried out with four different parsers, whose results are promising. For both evaluation datasets, the performance of parsers increases, in terms of the standard LAS and UAS measures and of a more focused measure taking into account only relations involved in error patterns, and at the level of individual dependencies.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here