Asymmetric Correntropy for Robust Adaptive Filtering

21 Nov 2019  ·  Badong Chen, Yuqing Xie, Zhuang Li, Yingsong Li, Pengju Ren ·

In recent years, correntropy has been seccessfully applied to robust adaptive filtering to eliminate adverse effects of impulsive noises or outliers. Correntropy is generally defined as the expectation of a Gaussian kernel between two random variables. This definition is reasonable when the error between the two random variables is symmetrically distributed around zero. For the case of asymmetric error distribution, the symmetric Gaussian kernel is however inappropriate and cannot adapt to the error distribution well. To address this problem, in this brief we propose a new variant of correntropy, named asymmetric correntropy, which uses an asymmetric Gaussian model as the kernel function. In addition, a robust adaptive filtering algorithm based on asymmetric correntropy is developed and its steady-state convergence performance is analyzed. Simulations are provided to confirm the theoretical results and good performance of the proposed algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here