Asymptotic Bayes risk for Gaussian mixture in a semi-supervised setting

8 Jul 2019  ·  Marc Lelarge, Leo Miolane ·

Semi-supervised learning (SSL) uses unlabeled data for training and has been shown to greatly improve performance when compared to a supervised approach on the labeled data available. This claim depends both on the amount of labeled data available and on the algorithm used. In this paper, we compute analytically the gap between the best fully-supervised approach using only labeled data and the best semi-supervised approach using both labeled and unlabeled data. We quantify the best possible increase in performance obtained thanks to the unlabeled data, i.e. we compute the accuracy increase due to the information contained in the unlabeled data. Our work deals with a simple high-dimensional Gaussian mixture model for the data in a Bayesian setting. Our rigorous analysis builds on recent theoretical breakthroughs in high-dimensional inference and a large body of mathematical tools from statistical physics initially developed for spin glasses.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here