ATD: Anomalous Topic Discovery in High Dimensional Discrete Data

20 Dec 2015Hossein SoleimaniDavid J. Miller

We propose an algorithm for detecting patterns exhibited by anomalous clusters in high dimensional discrete data. Unlike most anomaly detection (AD) methods, which detect individual anomalies, our proposed method detects groups (clusters) of anomalies; i.e. sets of points which collectively exhibit abnormal patterns... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet