Atlas Generative Models and Geodesic Interpolation

30 Jan 2021  ·  Jakob Stolberg-Larsen, Stefan Sommer ·

Generative neural networks have a well recognized ability to estimate underlying manifold structure of high dimensional data. However, if a single latent space is used, it is not possible to faithfully represent a manifold with topology different from Euclidean space. In this work we define the general class of Atlas Generative Models (AGMs), models with hybrid discrete-continuous latent space that estimate an atlas on the underlying data manifold together with a partition of unity on the data space. We identify existing examples of models from various popular generative paradigms that fit into this class. Due to the atlas interpretation, ideas from non-linear latent space analysis and statistics, e.g. geodesic interpolation, which has previously only been investigated for models with simply connected latent spaces, may be extended to the entire class of AGMs in a natural way. We exemplify this by generalizing an algorithm for graph based geodesic interpolation to the setting of AGMs, and verify its performance experimentally.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here