Attentional-Biased Stochastic Gradient Descent

13 Dec 2020  ·  Qi Qi, Yi Xu, Rong Jin, Wotao Yin, Tianbao Yang ·

In this paper, we present a simple yet effective provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning. Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch. The individual-level weight of sampled data is systematically proportional to the exponential of a scaled loss value of the data, where the scaling factor is interpreted as the regularization parameter in the framework of distributionally robust optimization (DRO). Depending on whether the scaling factor is positive or negative, ABSGD is guaranteed to converge to a stationary point of an information-regularized min-max or min-min DRO problem, respectively. Compared with existing class-level weighting schemes, our method can capture the diversity between individual examples within each class. Compared with existing individual-level weighting methods using meta-learning that require three backward propagations for computing mini-batch stochastic gradients, our method is more efficient with only one backward propagation at each iteration as in standard deep learning methods. ABSGD is flexible enough to combine with other robust losses without any additional cost. Our empirical studies on several benchmark datasets demonstrate the effectiveness of the proposed method.\footnote{Code is available at:\url{https://github.com/qiqi-helloworld/ABSGD/}}

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods