27 Sep 2018  ·  Daby Sow, Mohamed Ghalwash, Zach Shahn, Sanjoy Dey, Moulay Draidia, Li-wei Lehmann ·

Learning explainable patient temporal embeddings from observational data has mostly ignored the use of RNN architecture that excel in capturing temporal data dependencies but at the expense of explainability. This paper addresses this problem by introducing and applying an information theoretic approach to estimate the degree of explainability of such architectures. Using a communication paradigm, we formalize metrics of explainability by estimating the amount of information that an AI model needs to convey to a human end user to explain and rationalize its outputs. A key aspect of this work is to model human prior knowledge at the receiving end and measure the lack of explainability as a deviation from human prior knowledge. We apply this paradigm to medical concept representation problems by regularizing loss functions of temporal autoencoders according to the derived explainability metrics to guide the learning process towards models producing explainable outputs. We illustrate the approach with convincing experimental results for the generation of explainable temporal embeddings for critical care patient data.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here