Attosecond Pulse-shaping using a seeded free-electron laser

17 Dec 2020  ·  Praveen Kumar Maroju, Cesare Grazioli, Michele Di Fraia, Matteo Moioli, Dominik Ertel, Hamed Ahmadi, Oksana Plekan, Paola Finetti, Enrico Allaria, Luca Giannessi, Giovanni De Ninno, Carlo Spezzani, Giuseppe Penco, Alexander Demidovich, Miltcho Danailov, Roberto Borghes, Georgios Kourousias, Carlos Eduardo Sanches Dos Reis, Fulvio Billé, Alberto A. Lutman, Richard J. Squibb, Raimund Feifel, Paolo Carpeggiani, Maurizio Reduzzi, Tommaso Mazza, Michael Meyer, Samuel Bengtsson, Neven Ibrakovic, Emma Rose Simpson, Johan Mauritsson, Tamás Csizmadia, Mathieu Dumergue, Sergei Kühn, Harshitha N. G., Daehyun You, Kiyoshi Ueda, Marie Labeye, Jens Egebjerg Bækhøj, Kenneth J. Schafer, Elena V. Gryzlova, Alexei N. Grum-Grzhimailo, Kevin C. Prince, Carlo Callegari, Giuseppe Sansone ·

Attosecond pulses are fundamental for the investigation of valence and core-electron dynamics on their natural timescale. At present the reproducible generation and characterisation of attosecond waveforms has been demonstrated only through the process of high-order harmonic generation. Several methods for the shaping of attosecond waveforms have been proposed, including metallic filters, multilayer mirrors and manipulation of the driving field. However, none of these approaches allow for the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free Electron Lasers, on the contrary, deliver femtosecond, extreme ultraviolet and X-ray pulses with energies ranging from tens of $\mathrm{\mu}$J to a few mJ. Recent experiments have shown that they can generate sub-fs spikes, but with temporal characteristics that change shot-to-shot. Here we show the first demonstration of reproducible generation of high energy ($\mathrm{\mu}$J level) attosecond waveforms using a seeded Free Electron Laser. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with a novel approach for its temporal reconstruction. The results presented here open the way to perform attosecond time-resolved experiments with Free Electron Lasers.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Optics Atomic Physics